Parameters for using boot::boot() in Non-Sequential Analyses
Source:R/boot_control.R
boot_control.Rd
These functions are convenience functions for supplying parameters to bootstrap-based analyses. NOTE: sequential analyses require computing the covariance of estimates using a bootstrap function that preserves the covariance inherent in group sequential designs. This function should not be used for group sequential designs.
Usage
boot_control(
bootstrap_n = 10000,
parallel = "no",
ncpus = getOption("boot.ncpus", 1L),
...
)
boot_control_testing(bootstrap_n = 1000, ...)
Arguments
- bootstrap_n
A
numeric
scalar indicating the number of bootstrap replicates to perform.- parallel
A
character
scalar indicating whether and how to use parallel computing: see?boot
- ncpus
A
numeric
scalar indicating the number of cores to use in parallel computing: see?boot
- ...
Other named parameters passed to
boot
See also
parallel::parSapplyLB()
and parallel::parSapply()
for parallel
computing; monitored_analysis for conducting information monitored
analyses, which uses estimate_information and
calculate_covariance()
for computing the covariance of estimates.