Skip to contents

Computes the estimate of a contrast of means for continuous and binary outcomes on the additive scale, relative scale. Computing a marginal odds ratio is also possible for binary outcomes.

Usage

standardization(
  data,
  estimand = "difference",
  y0_formula,
  y1_formula,
  family,
  treatment_column = NULL,
  outcome_indicator_column = NULL
)

standardization_correction(
  data,
  y0_formula,
  y1_formula,
  treatment_column,
  outcome_indicator_column
)

Arguments

data

A data.frame containing baseline covariates (e.g. x1, x2, ...), a binary treatment indicator (e.g. tx where 1 = Treatment; 0 = Control), outcome variables (e.g. y1, y2, ...), and outcome indicators (e.g. .r_1, .r_2, ...). The outcome indicators indicate whether an outcome has been observed (1), is missing (0), or not yet obtained (NA).

estimand

A character scalar: "difference" (for a difference in means or risk difference), "ratio" (for a ratio of means or relative risk), or "oddsratio" (for an odds ratio for a binary outcome).

y0_formula

A stats::formula specifying the relationship between the outcome and covariates in the control arm.

y1_formula

A stats::formula specifying the relationship between the outcome and covariates in the treatment arm.

family

The stats::family for the outcome regression model

treatment_column

A character scalar indicating the column containing the treatment indicator.

outcome_indicator_column

A character scalar indicating the column containing the outcome indicator corresponding to treatment_column.

Value

A list containing the marginal means and their contrast:

Details

Generalized linear models, stratified by treatment arm, are fitted using the specified formulas. Predictions are generated for each individual from each treatment model, representing the predicted outcome under each treatment assignment. These predictions are marginalized over the covariates by averaging to produce marginal estimates of the means. Finally, the contrast is computed and returned.

Variance estimates can be obtained using the nonparametric bootstrap. Unadjusted estimates can be obtained by using intercept only models.

Examples


ex_1 <- example_1
ex_1$.r_4 <- 1*(!is.na(ex_1$y_4))

standardization(
  data = ex_1,
  estimand = "difference",
  y0_formula = y_4 ~ x_1 + x_2 + x_3 + x_4,
  y1_formula = y_4 ~ x_1 + x_2 + x_3 + x_4,
  family = gaussian,
  treatment_column = "tx",
  outcome_indicator_column = ".r_4"
)
#> $estimate
#> [1] 3.399756
#> 
#> $y1_pred
#>            1            2            3            4            5            6 
#> -0.297051858  5.073109474 11.436194287 -2.513249148  8.465807942  2.964424727 
#>            7            8            9           10           11           12 
#>  1.329629699  3.702978369  0.583497314  8.278725911  2.066010821  7.574220209 
#>           13           14           15           16           17           18 
#>  8.059079706 -0.237060205  4.512008648  7.886628113  6.819003744 12.488891547 
#>           19           20           21           22           23           24 
#> -4.396487588  7.980101994  7.835935773  9.386694433  9.600527704 11.345502540 
#>           25           26           27           28           29           30 
#>  7.526925700  6.570070999  1.195479206 14.197233167 -3.740726868 -1.054410797 
#>           31           32           33           34           35           36 
#>  0.377046558 -1.359020248  8.341046638 -0.760193888 12.095957376  0.827557407 
#>           37           38           39           40           41           42 
#>  1.142987383 11.365537427  4.394520750  4.846709061  0.671176472  4.866668537 
#>           43           44           45           46           47           48 
#> 16.669510919 -0.535484097  4.724423653 10.453155535  2.182827822  3.646232219 
#>           49           50           51           52           53           54 
#>  2.554949396  8.415424213 -1.629085444  6.212956673  9.707494802  3.402470267 
#>           55           56           57           58           59           60 
#>  3.298780017 -0.023389418  6.282669269 15.002882674  9.016259072 -2.120883320 
#>           61           62           63           64           65           66 
#> 13.584155206  7.972138009 -0.327298990 -5.859776104  7.799248530  7.930315974 
#>           67           68           69           70           71           72 
#>  2.081842180  4.647729974 10.603181547  4.322683208  2.980861237 -0.293104870 
#>           73           74           75           76           77           78 
#>  4.345600417  5.353470291  9.491364566 -2.483042959  8.060922454 -2.848809088 
#>           79           80           81           82           83           84 
#>  1.267695476 13.892626118  6.873781113  1.565514694  4.927546594 12.779692123 
#>           85           86           87           88           89           90 
#>  7.406749570  6.259928006  5.821015519 -0.024263548  2.405295153  1.954568986 
#>           91           92           93           94           95           96 
#>  4.966503078 10.680288450 -5.617376258  1.819708761 16.075819981 -0.621160094 
#>           97           98           99          100          101          102 
#>  1.647365497  6.232268535  1.534085623 10.492200443  1.941639089  0.009062318 
#>          103          104          105          106          107          108 
#>  6.203182538  5.917814244  4.512744743  1.960211105  5.438448585 -4.644893491 
#>          109          110          111          112          113          114 
#> -1.874170408  4.169962197 11.774180178  0.183018732  4.555624627  4.798871160 
#>          115          116          117          118          119          120 
#>  3.293412932 11.219324718  3.828292949  5.184923919 -0.312499263  9.921262066 
#>          121          122          123          124          125          126 
#>  0.066305387  6.464671612  4.189741786  6.429775707  4.473312531  2.494016113 
#>          127          128          129          130          131          132 
#>  8.227636162 -7.004591693  0.540755008  8.772332355 12.036693094  3.892001708 
#>          133          134          135          136          137          138 
#>  1.050136975 -3.447485624  9.631010062  1.792401265  3.927341604  2.658138653 
#>          139          140          141          142          143          144 
#>  6.690208421  3.510519788 -2.060464142 10.545740886  2.188605527  6.912954393 
#>          145          146          147          148          149          150 
#>  3.190863622 15.563077802 -8.111077566  4.980135539  6.654453568  3.383329118 
#>          151          152          153          154          155          156 
#>  6.479447591 -0.140368080  5.345597596 14.352718616  4.372367694 -3.415367654 
#>          157          158          159          160          161          162 
#>  4.834836311 -1.210974845 -6.904389433  2.476945936 10.691536736  9.180756844 
#>          163          164          165          166          167          168 
#>  3.190953103  5.192707152  7.222875013 12.109275000  8.629434159  5.653633237 
#>          169          170          171          172          173          174 
#> 13.294147211 13.248027476 -0.351326842  1.489021483  8.699858133  8.620943622 
#>          175          176          177          178          179          180 
#>  3.331467295 14.777410595  0.277646771  9.478067915  4.690259698  9.861443414 
#>          181          182          183          184          185          186 
#> 13.982665208 10.763437242  7.408329690  2.823376601  7.324778154  1.050275620 
#>          187          188          189          190          191          192 
#>  9.031491318 -0.431978558  5.097501235 -3.373953668  7.876481276  7.259143858 
#>          193          194          195          196          197          198 
#>  5.032283175  5.279436795  6.506435284  2.346482216  9.915531027 -2.351233753 
#>          199          200          201          202          203          204 
#>  6.528750998  1.765941582 11.989494540 13.762651635  4.943060599 -1.133975437 
#>          205          206          207          208          209          210 
#>  7.191147083 -0.301078619  5.603496348 10.481670093 10.371049987  4.612870111 
#>          211          212          213          214          215          216 
#>  3.643203539  4.367922314  5.660704335  4.484621594 12.710301520  3.100211616 
#>          217          218          219          220          221          222 
#> 12.647356672 -4.828054373  8.092643731  0.955353160  1.649256417 16.892977209 
#>          223          224          225          226          227          228 
#>  7.802017587 10.343180665  7.086627365 14.547013540 -4.053265589  0.696517564 
#>          229          230          231          232          233          234 
#> 12.426849180 -6.093232309 10.341036368  3.505514343  7.683300971 11.814084974 
#>          235          236          237          238          239          240 
#>  0.207818521 12.584715101  4.300786546 -2.736527721  7.859595526 11.123626763 
#>          241          242          243          244          245          246 
#> 10.223281729 19.108704235  9.357019868 -4.541704580  7.076749565  6.782784202 
#>          247          248          249          250          251          252 
#>  5.381955674 11.149902643 -2.802809197  1.342226120  4.909787615 -2.122455165 
#>          253          254          255          256          257          258 
#>  8.348697027  8.613037844  0.366674423  5.013208899 10.198756563  3.169252497 
#>          259          260          261          262          263          264 
#>  4.266800291  5.777463823  5.338778691  3.656025911  3.555998749  8.706774792 
#>          265          266          267          268          269          270 
#> 12.538376494 10.982582713 11.788257900  4.233066916 10.531578258  5.021019152 
#>          271          272          273          274          275          276 
#> -2.911129593 11.189336499  2.821315525  4.408168484  6.583162083  1.511252190 
#>          277          278          279          280          281          282 
#>  7.405094967  2.472301493  6.704306689  1.121372912  2.332754030  6.475399590 
#>          283          284          285          286          287          288 
#>  7.007579616 11.135455013  4.892699046  9.041922065 13.987596523  7.579622103 
#>          289          290          291          292          293          294 
#> 11.148506324  1.621183777 -1.974476193 -0.531407174  3.615686540  6.449567856 
#>          295          296          297          298          299          300 
#>  5.547206755  5.655709394  9.554970645 10.811082968  4.888080095  4.345795222 
#> 
#> $y0_pred
#>            1            2            3            4            5            6 
#>   0.29513801   1.45051208   6.57681738  -4.93329026   4.15647654  -0.56341465 
#>            7            8            9           10           11           12 
#>   1.60851871  -0.26771424  -4.75730987   4.19768331   0.97506743   7.54440913 
#>           13           14           15           16           17           18 
#>   5.06705080   1.18663014   0.94411379   5.75660204   2.49123485   7.13545396 
#>           19           20           21           22           23           24 
#>  -5.78415572   4.78129418   3.47565019   7.03572879   1.51399934   4.67492510 
#>           25           26           27           28           29           30 
#>   0.83985663  -1.42007878  -4.50526832   9.18472878  -6.69306748  -5.31330550 
#>           31           32           33           34           35           36 
#>  -2.78640260  -2.10695699   2.44961903  -5.05738667   5.12879051  -2.70333559 
#>           37           38           39           40           41           42 
#>  -0.66327583   4.64486556   2.87718646   3.70495234  -0.61526473   5.65676039 
#>           43           44           45           46           47           48 
#>  11.00417427  -6.00953265   2.77973457   6.88433822  -1.85433187  -0.27945891 
#>           49           50           51           52           53           54 
#>  -3.05379510   4.25352252  -3.20499786   5.09565144   5.90733778   1.01392810 
#>           55           56           57           58           59           60 
#>   1.36936532  -4.34068705   3.29352698  11.70782895   4.13649440  -5.35507918 
#>           61           62           63           64           65           66 
#>   8.72578102   3.70370295  -1.85300954  -8.45537717   5.34758574   1.91878595 
#>           67           68           69           70           71           72 
#>  -1.70826561   0.07570689   7.48480813   1.85693824  -0.38483276   0.13627150 
#>           73           74           75           76           77           78 
#>   1.16053478   3.47115272   1.03550429  -3.12468960   4.84205590  -6.18832432 
#>           79           80           81           82           83           84 
#>  -1.72550637   7.63395837   4.04394423   0.45469142  -0.35145691   6.38846000 
#>           85           86           87           88           89           90 
#>   7.27242203   1.09759623   0.05137633   1.09083878  -4.75181375   0.81946330 
#>           91           92           93           94           95           96 
#>   1.01321302   6.90157980  -8.55652105  -1.86535376   9.85114151  -4.08795173 
#>           97           98           99          100          101          102 
#>  -2.10031500   1.24401020   1.33165360   5.59539780  -1.05439557  -1.96659194 
#>          103          104          105          106          107          108 
#>   0.41480786   2.74166317   0.73071674   0.30436064   2.27367607  -6.61314037 
#>          109          110          111          112          113          114 
#>  -0.89599499  -0.20330360   5.81101171  -3.05021205  -0.67521906   0.80078768 
#>          115          116          117          118          119          120 
#>  -1.32762460  10.07252300   2.46584354   1.47034863  -5.96461749   4.33255630 
#>          121          122          123          124          125          126 
#>  -4.09948579   0.92958960   0.05852662   3.28598045  -1.53979917  -2.44531235 
#>          127          128          129          130          131          132 
#>   3.50344872 -12.49873363  -2.14322463   6.81314831  11.13074286   3.69212011 
#>          133          134          135          136          137          138 
#>  -5.12119742  -8.58705562   4.77696161  -1.71478672   2.77732028   2.22848469 
#>          139          140          141          142          143          144 
#>   1.99015797  -1.07740918  -6.38001586   5.52079333  -0.52429451   3.69931867 
#>          145          146          147          148          149          150 
#>  -0.35692891  11.30888544 -10.52703528  -1.80784264  -2.28888244  -0.95978005 
#>          151          152          153          154          155          156 
#>   5.15496126  -2.52551468   6.61972938   7.88454578   4.77774187  -7.58697832 
#>          157          158          159          160          161          162 
#>   0.74645659  -3.02234522  -9.57140842   1.62330545  10.83617353   8.04593929 
#>          163          164          165          166          167          168 
#>   0.00540188   1.47499597   2.05039690   4.69580168   6.75383173   0.39454606 
#>          169          170          171          172          173          174 
#>  10.97392026  10.96747338  -5.57558637  -2.58984960   5.78308649   4.69317793 
#>          175          176          177          178          179          180 
#>   1.74953285  11.63069271  -2.47866937   6.32125310   1.18294243   5.03115514 
#>          181          182          183          184          185          186 
#>   9.63406596   4.76170308   4.72386736   0.76376851   5.10532146  -1.87160296 
#>          187          188          189          190          191          192 
#>   5.87004065   0.88018560   0.22305278  -3.23233355   2.52219555   2.03135409 
#>          193          194          195          196          197          198 
#>   1.85823043   0.11754956   5.95018371   0.57749290   4.08253360  -8.77234401 
#>          199          200          201          202          203          204 
#>   5.01288235  -1.47972041   6.66502776  10.82874977  -0.02579330  -1.57341093 
#>          205          206          207          208          209          210 
#>   7.41480659  -3.54379525   1.04831493   8.59029347   5.54286099  -2.76193619 
#>          211          212          213          214          215          216 
#>  -0.19284239   3.66866794   6.05184017   4.67161686   7.65418030  -1.53331001 
#>          217          218          219          220          221          222 
#>   5.58780770  -6.90396483   3.21730215  -2.07078451   1.44759837  11.11253031 
#>          223          224          225          226          227          228 
#>  10.73952458   8.91710642   6.34378213   8.46527232  -0.69989084   0.50470181 
#>          229          230          231          232          233          234 
#>  11.25943897  -9.01745879   9.98069698  -1.67386944   2.24913944   9.01335133 
#>          235          236          237          238          239          240 
#>  -1.62299312   4.41368280   0.96572540  -6.93429093   3.29534392   4.22569843 
#>          241          242          243          244          245          246 
#>  10.00835908  13.63335087   3.69194364  -5.67939763   4.48772560   0.20868586 
#>          247          248          249          250          251          252 
#>   3.19513255   4.42626429  -2.40670417   0.59439782  -0.56444748  -3.57192431 
#>          253          254          255          256          257          258 
#>   6.26010046   3.40296339   1.45202589   1.86749164   6.22368611   0.81010813 
#>          259          260          261          262          263          264 
#>   1.53427166   4.53642209   1.86092392  -0.96780156  -0.20685046   3.65736988 
#>          265          266          267          268          269          270 
#>   3.84428540   5.05587961  10.11964544   3.30958026   6.51819972   1.74112267 
#>          271          272          273          274          275          276 
#>  -7.28027170   7.97135050  -1.35208037  -1.35594062   4.90411480  -1.58385498 
#>          277          278          279          280          281          282 
#>   4.32767736  -1.24098224   2.44845522  -2.48756366  -0.72164870  -0.67771463 
#>          283          284          285          286          287          288 
#>   4.81845962   6.68136224   1.13089909   3.94423628   8.13967283   1.54679639 
#>          289          290          291          292          293          294 
#>   6.92826722   0.54854995  -1.12398015  -4.45525658  -4.93959840   3.99151710 
#>          295          296          297          298          299          300 
#>   2.09538416   4.07907836   5.89236185  10.11967178   0.11747174   3.84806477 
#> 
#> attr(,"class")
#> [1] "standardization"